I.- Resuelve las siguientes desigualdades e indica el intervalo que satisface la desigualdad:

1.\(2x \cdot 3x < 5x + 8 \)
2.\(4 < 3x - 2 \leq 10 \)
3.\(\frac{7}{x} > 2 \)
4.\(\frac{x}{x-3} < 4 \)
5.\((x+3)(x+4) > 0 \)
6.\(5x + 2 > x - 6 \)
7.\(3x - 5 \leq \frac{3}{4}x + \frac{1-x}{3} \)
8.\(13 \geq 2x - 3 \geq 5 \)
9.\(2 \leq 5 - 3x < 11 \)
10.\(2 > -3 - 3x \geq -7 \)
11.\(\frac{4}{x} - 3 > \frac{2}{x} - 7 \)
12.\(\frac{2}{1-x} \leq 1 \)
13.\(x^2 + 3x + 1 > 0 \)
14.\(x^2 - 3x + 2 > 0 \)
15.\(1 - x - 2x^2 \geq 0 \)
16.\(4x^2 + 9x < 9 \)
17.\(2x^2 - 6x + 3 < 0 \)
18.\(\frac{1}{x+1} < \frac{2}{3x-1} \)
19.\(\frac{x+1}{2-x} < \frac{x}{3+x} \)
20.\(\frac{1}{3x-7} \geq \frac{4}{3-2x} \)
II.- Encuentra el dominio y el contra dominio de las siguientes funciones:

1.- \(y = \sqrt{5 - x} \)
2.- \(y = \frac{x^2 - 9}{x - 3} \)
3.- \(y = \sqrt{x^2 - 2x} \)
4.- \(y = 3x - 1 \)
5.- \(y = x^2 + 2 \)
6.- \(y = 3x^2 - 6 \)
7.- \(y = \sqrt{x + 1} \)
8.- \(y = \sqrt{3x - 4} \)
9.- \(y = \sqrt{4 - x^2} \)
10.-\(y = \sqrt{x^2 - 4} \)
11.-\(y = \sqrt{x^2 - 3x - 4} \)
12.-\(y = \sqrt{6x^2 - 5x - 4} \)
13.-\(y = \frac{x^3 - 2x^2}{x - 2} \)
14.-\(y = \frac{4 - x}{x + 1} \)
15.-\(y = \sqrt{4 - 3x} \)
III.- Dadas las funciones f(x) y g(x). Obtener las cuatro operaciones y la función compuesta (f ∘ g) y (g ∘ f) con su dominio de estas operaciones resultantes.

1.- f(x) = √x + 1
 g(x) = √x

2.- f(x) = x - 5
 g(x) = x^2 + 2

3.- f(x) = √x
 g(x) = x^2 + 1

4.- f(x) = √x + 1
 g(x) = √x - 4

5.- f(x) = \frac{x+1}{x-1}
 g(x) = \frac{1}{x}

6.- f(x) = √x
 g(x) = 4 - x^2

7.- f(x) = √x - 4
 g(x) = x^2 - 4

8.- f(x) = \frac{1}{x+1}
 g(x) = \frac{x}{x-2}

9.- f(x) = x^2 - x - 12
 g(x) = x + 3

IV.- Dada la función f(x) = 2x - 1

 f(3) ; f\left(\frac{1}{4}\right) ; f(\sqrt{5}) ; f(x + 1) ; f(x) ; f(h) ; f(2x^2) ; f(-5) ; f\left(\frac{3}{5}\right)

Dada la función y = \frac{8}{x}, calcular:

F(1) ; f(x - 3) ; f(-8) ; f\left(\frac{1}{2}\right) ; f\left(\frac{1}{4}\right) ; f\left(-\frac{1}{4}\right) ; f\left(\frac{8}{x}\right) ; f\left(\frac{3}{x}\right) ; f(x) - f(h)

Dada la función f(x) = 2x^2 + 5x - 3 calcular:

f(1) ; f(-1) ; f(0) ; f(h+1) ; f(x + h) - f(x) ; f(x^2 - 3)

Dada la función g(x) = \sqrt{4-x}
 Calcular:

g(4-x) ; g(4-x^2) ; g(4x - x^2) ; g(-12) ; g\left(\frac{3}{4}\right)
V.- Indicar si las funciones siguientes son continuas o discontinuas y obtener los puntos de discontinuidad si los hay. Así como cuales son evitables.

1.- $y = x^2 - 2x + 1$

2.- $f(x) = \frac{1}{x^2+1}$

3.- $y = \left(\frac{x-3}{x^2-9} \right)$

4.- $f(x) = 5x^3 - 3x^2 + x - 8$

5.- $f(x) = \frac{x-1}{x^2+x-2}$

6.- $y = \frac{x}{x^2+1}$

7.- $f(x) = \frac{x+2}{x^2-3x-10}$

8.- $y = \frac{x}{x^2-1}$

VI.- Calcular los límites de las siguientes funciones:

1.- $\lim_{x \to 3} (x^2 + 2x + 3)$

2.- $\lim_{x \to \frac{1}{2}} (x^3 - 4x^2 - 5x + 1)$

3.- $\lim_{x \to -3} (5x - 2)$

4.- $\lim_{x \to 0} \frac{2-\sqrt{4-x}}{x}$

5.- $\lim_{x \to 3} \frac{x^3-27}{x^2-9}$

6.- $\lim_{x \to 4} \frac{x-4}{x^2-x-12}$
7. \(\lim_{h \to 0} \frac{(x-h)^2-x^2}{h} \)

8. \(\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x} \)

9. \(\lim_{x \to 2} \frac{\sqrt{x-2}}{x^2-4} \)

10. \(\lim_{x \to -3} \frac{x^2+5x+6}{x^2-x-12} \)

11. \(\lim_{x \to 0} \frac{x^2+5x+6}{x^2-x-12} \)

12. \(\lim_{x \to -\infty} \frac{x^2+5x+6}{x^2-x-12} \)

13. \(\lim_{x \to -\infty} \frac{2-3x}{7-9x} \)

14. \(\lim_{x \to -\infty} \frac{1+2x+6x^2}{4-3x+6x^2} \)

15. \(\lim_{x \to 0} \left(1 + \frac{1}{x^2} \right) \)

16. \(\lim_{x \to -1} \frac{x^2-3x}{x-1} \)

17. \(\lim_{x \to 0} \frac{x^2-3x}{x-1} \)
18. \(\lim_{x \to 1} \frac{x - 1}{x^2 - 3x} \)

VII. Derivar las siguientes funciones por la regla de los cuatro pasos o regla de definición:

1. \(y = x - 3 \)

2. \(y = \frac{3}{x} \)

3. \(y = \sqrt{7x} \)

4. \(y = x^2 - 3x - 7 \)

5. \(y = 5 - 2x \)

6. \(y = \frac{x - 1}{x + 2} \)
I) Deriva las siguientes funciones respecto a “X”

1. \(y = 2x + 5 \)
2. \(y = 2 + \frac{x}{2} \)
3. \(y = -\frac{2x}{7} + 1 \)
4. \(y = 3x^2 - x + 5 \)
5. \(y = 2x^2 - 8x + 5 \)
6. \(y = (4-x)(3+x) \)
7. \(y = 3x^5 \)
8. \(y = 2x^3 - 7 \)
9. \(y = \frac{5x^3}{4} \)
10. \(y = \frac{\sqrt{x^3}}{5} \)

II) Derivación (Regla de la cadena)

1. \(y = (3 - 2x)^3 \)
2. \(y = (1 - 5x)^{\frac{2}{5}} \)
3. \(y = 2\sqrt{x^3} + 6 \sqrt{x} \)
4. \(y = \frac{3\sqrt{5w^3} + 14}{\frac{7}{\sqrt{x^5} - 16}} \)
5. \(y = \frac{\sqrt{5}x^3}{\sqrt{5}x^5 - 16} \)
6. \(y = \frac{\sqrt[3]{5x^2}}{\sqrt[3]{3x}} - \frac{1}{\sqrt[3]{3x}} \)
7. \(y = (z^2 - 5z + 3)^{\frac{2}{3}} \)
8. \(y = 8\frac{\sqrt[3]{x^3} + \sqrt[3]{x^5}}{3\sqrt[3]{x^5}} \)
9. \(y = (3-x)(2-x)(5-x) \)
10. \(y = \frac{1-x}{3+2x^2} \)

III) Derivadas sucesivas, Obtener:

1. \(y = 2x^4 \) ……..Quinta Derivada
2. \(y = x^{-3} \) ………..Tercera Derivada
3. \(y = 2x^5 - 3x^2 + 6x \) ………..Cuarta Derivada
4. \(y = \frac{3}{4} - 9x \) ………..Tercera Derivada
IV) Derivada de Funciones implícitas

Obtener la derivada de “Y” con respecto a “X” en las siguientes funciones:

1. $5x^2 + y^2 = 1$
2. $x^2 - 5y^2 = 3$
3. $x^2y^2 - y^2 = x^2$
4. $x^2 + y^2 = 0$
5. $x - 5y^2 = 3y$
6. $x^3 - xy + y^2 = 0$
7. $x^2 - y^2 = 5y$
8. $\frac{y}{x} + \frac{x}{y} = 6$
9. $\frac{1}{x} + \frac{1}{y} = 3$
10. $\frac{x+2y}{x-2y} = x^2$

V) Derivadas de funciones trigonométricas directas

1. $y = \tan 2x$
2. $y = \sec x^2$
3. $f(x) = 4 \sin 2x$
4. $y = 3 \cos \frac{x}{2}$
5. $y = 3 \sin^2 \frac{x}{2}$
6. $y = \sqrt{\sin x}$
7. $y = \sin^2 (x - 2)$
8. $y = \tan \left(\frac{2-x}{2+x} \right)$
9. $\frac{1}{x} + \frac{1}{y} = 3$
10. $\frac{x+2y}{x-2y} = x^2$

VI) Derivadas de Funciones Trigonométricas Inversas

1. $y = \arcsin (2x - 5)$
2. $y = \arcsin \frac{x}{2}$
3. $y = \arcsin \sqrt{x}$
4. $y = \arctan 3x^3$
5. $y = \arcsec \frac{3-x}{3}$
6. $y = \arccsc \sqrt[2]{1-2x}$
7. $y = \arccot \frac{1+x}{1-x}$
8. $y = \arctan \sqrt{x}$
9. $y = \arccot x^2$
10. $y = x \arcsin 3x$
VII) Derivadas de funciones exponentiales

1.- y = e^{2x}
6.- y = e^{tg x}
2.- y = 7^{nx}
7.- y = e^{x^2}
3.- y = \frac{3}{e^x}
4.- y = e^{sen 3x}
5.- y = e^{-t} \cos t

VIII) Derivadas de funciones logarítmicas

1.- y = \ln (3x + 1)^2
6.- y = \ln (x^3 + 1)
2.- y = \log (3x^2 + 2)
7.- y = \ln \frac{x^2}{3 + x^2}
3.- y = \ln 2x^2
8.- y = \log \sqrt{3 - 2x^2}
4.- y = \log (2x^3 - 3x^2 + 5)
9.- y = \ln (x^2 + 2x - 3)^3
5.- y = \log \frac{3}{x}
10.- y = \log (x -1)
I. Determina la medida del ángulo agudo y obtuso que forman las curvas dadas.

a) \(y = x^2 + 1; \ y = \sqrt{x} + 1 \) en el punto (0.1).

b) \(y = \frac{4}{3} x^2; \ y = \sqrt{25 - x^2} \) en el punto (3,4).

c) \(y = \sqrt{13 - x^2}; \ y = \sqrt{18 - (x + 5^2)} \)

d) \(x^2 - y^2 = 2; \ y^2 - x = 0 \) en el punto (2, -\sqrt{2})

e) \(3x^2 + 5y = 0; 2x + 5y + 1 = 0 \)

f) \(xy = 1; \ xy - x + 1 = 0 \)

g) \(x^2 + y^2 = 5; \ y^2 - 4x = 0 \) en \(x = 1 \)

h) \(3x^2 + 4y^2 - 12 = 0; 4y^2 - 9x = 0 \) en \(x = -1 \)

i) \(xy - x - 2 = 0; \ xy - 1 = 0 \)

j) \(x = \sqrt{2}y, \ y = (x + 2)^2 \) en \(x = -4 \)

k) \(y = x^2 + x; \ y = -x^2 + 5x \)

II. Por medio del criterio de la primera o segunda derivada, determina los máximos, los mínimos, los intervalos donde la función es creciente o decreciente, los intervalos de concavidad, los puntos de inflexión y la gráfica.

a) \(f(x) = x^2 - 6x + 3 \)

b) \(f(x) = -3x^2 + 5x - 4 \)

c) \(f(x) = x^2 - 6x + 10 \)

d) \(f(x) = x^3 - 3x \)

e) \(f(x) = -x^2 + 4x + 6 \)

f) \(f(x) = x^3 - 6x^2 \)

g) \(f(x) = 4x^3 + 3x^2 - 6x \)

h) \(f(x) = 4x^3 - x^2 - 4x + 3 \)

i) \(f(x) = -2x^3 + 3x^2 - 12x - 5 \)

j) \(f(x) = x^3 - 3x^2 - 9x + 1 \)

k) \(f(x) = 2x^3 - 3x^2 - 12x + 6 \)

l) \(f(x) = 2x^3 - 3x^2 - 2x + 6 \)

m) \(g(x) = \frac{1}{3} x^3 - x^2 - 3x + 1 \)

n) \(g(x) = \frac{1}{3} x^3 - \frac{1}{2} x^2 - 6x + 4 \)

o) \(g(x) = \frac{1}{4} x^4 - \frac{4}{x} x^2 + \frac{3}{2} x^2 + 1 \)

p) \(g(x) = x^4 - 4x^3 \)

q) \(g(x) = (x^2 - 1)^2 \)

r) \(g(x) = \sqrt{x^2 + 2} + 36 \)

s) \(g(x) = \frac{3}{x^2 - 2x} \)

t) \(g(x) = \frac{2x}{x^2 + 4} \)

u) \(g(x) = \frac{x^2}{x + 3} \)

III. Por medio del criterio de la primera o segunda derivada, determina los máximos, los mínimos, los intervalos donde la función es creciente o decreciente, los intervalos de concavidad, los puntos de inflexión y la gráfica.
IV. Por medio de un planteamiento algebraico establece una función, para que a través del criterio de la primera o segunda derivada resuelva cada uno de los siguientes problemas de optimización.

a. Encuentra dos números cuya suma sea 40 y su producto un máximo.

b. Encuentra dos números cuya diferencia sea 50 y su producto mínimo.

c. La suma de dos números naturales es 16. Encuentra los números si la suma de sus cubos es un valor mínimo.

d. Determina dos números positivos cuyo producto es 16 y tiene suma mínima.

e. Con una lámina cuadrada de aluminio de 12 pulgadas por lado, se requiere construir una caja sin tapa, cortando cuadrados iguales en las esquinas y doblando los bordes. ¿Cuánto deben medir por lado los cuadrados recortados para obtener un volumen máximo? ¿Cuánto mide dicho volumen?

f. Un cartel tiene una superficie de 150 cm2 con márgenes de 3 cm en la parte superior e inferior y 2 cm a los lados. Calcula el área máxima impresa en el cartel.

g. Una persona tiene una pared de piedra en el costado de un terreno. Dispone de 1600 m de material para cercar y desea hacer un corral rectangular utilizando el muro como uno de sus lados. ¿Qué dimensiones debe tener el corral para tener la mayor área posible?

h. Calcula las dimensiones de un triángulo isósceles con un perímetro de 6 unidades que tenga área máxima.

i. En la construcción de un recipiente cilíndrico de hojalata se emplean 100 pulg2. Esta cantidad incluye las tapas. ¿Cuál es el mayor volumen que podría tener la lata?

j. En la construcción de un recipiente cilíndrico de hojalata se emplearán 150 pulg2. Esta cantidad incluye las tapas. ¿Cuáles son las dimensiones del cilindro para que contenga el volumen máximo?

k. Se desea construir un cono con una generatriz de 10 cm. ¿Cuál es el mayor volumen posible para dicho cono?
I. Un alambre de 100 cm de largo se va a partir en dos trozos, una de las partes se va a doblar para formar una circunferencia, y la otra un triángulo equilátero. ¿Cómo se debe cortar el alambre para que la suma de las áreas del círculo y del triángulo sea máxima?

m. ¿Cuáles son las dimensiones que debe tener un cono de volumen máximo cuya área lateral es de $10\pi m^2$?

n. Calcula el volumen máximo de un cilindro circular recto que se puede inscribir en un cono de 72 cm de altura y 24 cm de radio base, de manera que los ejes del cilindro y el cono coincidan.

o. Encuentra las dimensiones del rectángulo de área máxima que se puede inscribir en un semicírculo con radio igual a 2 unidades.

p. ¿Cuáles son las dimensiones del rectángulo de mayor perímetro que se puede inscribir en un semicírculo de radio 5 unidades?

q. Encuentra las dimensiones del rectángulo inscrito en un círculo con radio de 25 cm que proporcione el área máxima.

r. Se inscribe un rectángulo en un triángulo isósceles, cuyos lados tienen longitud de 5, 5, y 6 unidades. Uno de los lados del rectángulo está sobre la base del triángulo (lado desigual). ¿Cuál es el área mayor que puede abarcar el rectángulo?

s. Encuentra las dimensiones del cono recto circular de máximo volumen que pueda ser inscrito en una esfera de radio 6 unidades.

t. ¿Cuáles son las dimensiones del cilindro circular recto de máxima área lateral que puede inscribirse en una esfera de radio 8 pulgadas?

u. La resistencia de una viga rectangular varía según sus dimensiones. Si la resistencia es proporcional al cuadrado del ancho de la viga por la altura. ¿Cuáles son las dimensiones de la viga más resistente que podría cortarse de un tronco cilíndrico con radio de 3 pies?

v. El anuncio de 20 m de altura está colocado sobre una base que se encuentra a 5 m sobre el nivel de los ojos de una persona. ¿Qué tan alejada debe estar la persona para que su ángulo de visión sea máximo?

V. Resuelve los siguientes problemas de movimiento rectilíneo uniforme.

a) La posición de una partícula se expresa mediante la función $s(t) = 2t^3 - 5t^2 + 10t$ con s en metros y t en segundos. ¿Cuál es su rapidez para $t = 1, \frac{3}{2}, 0$ segundos?

b) La distancia recorrida por un automóvil sobre una carretera en el instante t está dado por $s(t) = 9t^4 - 120t^3 + 432t^2$. ¿En qué intervalos su velocidad media es positiva?

c) La trayectoria de una partícula en movimiento rectilíneo está dada por la función $s(t) = t^3 - 9t^2 - 24t + 2$. Determina:

GUÍA DE CÁLCULO DIFERENCIAL. Tercer parcial
ACADEMIA DE MATEMÁTICAS. TURNO VESPERTINO. 2018
s y a cuando v = 0
s y v cuando a = 0
Cuando s aumenta
Cuando v aumenta
d) Un proyectil es lanzado con una trayectoria que obece a la función \(s(t) = -3t^2 + 54t \)
 • Calcula en que tiempo hace contacto con su objetivo que se encuentra sobre la superficie terrestre y la velocidad que lleva en ese instante.
 • ¿En qué instante logra su altura máxima y cuál es el valor de este.
e) Un proyectil es lanzado en una dirección a una torre de 36 m de altura. El proyectil sigue la trayectoria de acuerdo con la función \(s(t) = -t^2 + 12t \), después de 7 segundos. Indica la velocidad y la altura en la que hace contacto el proyectil con la torre.

VI. Resuelve los siguientes problemas de razón de cambio.

a. Si la altura de un árbol es de \(10\sqrt{2r^2/2} \) cm, donde \(r \) es el radio de la parte transversal del tronco del árbol. Si el radio aumenta a razón de \(\frac{1}{6} \) cm/año. ¿Con qué rapidez cambia la altura cuando su radio es de 5 cm?

b. Un náufrago es remolcado hacia un barco con un cable. La proa de donde se jala el cable se encuentra a 7 m del nivel del mar y el cable es jalado a razón de 12 m/min. ¿Con qué rapidez se está moviendo el náufrago hacia el barco cuando se encuentra a 20 m de la base del barco?

c. Un automóvil que viaja a 80km/h cruza un puente sobre un río, 20 minutos antes de que un bote que viaja a 40 km/h pasa por debajo del puente. Vistos desde arriba, el río y el puente forman un ángulo recto. ¿Con qué rapidez se están separando el automóvil y el bote 20 minutos después de que el bote pasa por debajo del puente?

d. Un globo de forma esférica, se infla a razón de 0.16m³/7min. ¿Cuál es el volumen del globo cuando su radio está aumentado a razón de 2.20 m/min?

e. Una escalera de 13 metros de largo está apoyada sobre una pared. Encuentra la rapidez con que baja el extremo superior de la escalera, cuando su extremo inferior dista 5 m del muro y se separa a razón de 5 m/s.

f. Al caer una piedra a un estanque de aguas tranquilas forma una honda circular, cuyo radio aumenta a razón de 1 cm²/s. ¿Con qué rapidez aumenta el área encerrada por la honda cuando el radio es de 5 cm?

g. Un tanque cilíndrico de 7 m de radio y 10 m de altura se llena de agua. Se hace un agujero en el fondo del tanque, en ese momento el agua sale a razón de 3 m³/min ¿A qué rapidez está cambiando la altura del líquido en el tanque?

h. Se está vaciando un depósito cóncico de 1.5 m de radio y 5 m de altura, a razón de 0.16 m³/min. ¿Cómo está bajando el nivel cuando la profundidad del agua es de 2 m?

i. Una persona está de pie en un muelle y jala una lancha por medio de una cuerda. Sus manos están a 2 m por encima del amarrar de la lancha. Si la persona jala la
cuerda a razón de 70 cm/s. ¿Con qué rapidez se aproxima la lancha al muelle cuando se encuentra a 5 m de él?

j. Un hombre de 1.80 m de altura de estatura camina en línea recta 1.5 m/s alejándose de un faro que se encuentra a 8 m de altura sobre el suelo. ¿Con qué rapidez se mueve el extremo de su sombra? ¿Cuál es la rapidez con la que cambia la longitud de su sombra?

VII. Por medio de la primera o segunda derivada, resuelve los siguientes problemas aplicados a la economía.

a. El costo estimado para producir x artículos está dado por la función $C(x) = 0.004x^2 + 5x + 6000$. Determina el costo promedio y el costo marginal de producir 2000 artículos y calcula el nivel de producción para el cual el costo promedio es el más bajo y cuál es dicho costo.

b. Una empresa estima su ingreso y costo con las funciones $l(x) = -4x^2 + 400x$ y $C(x) = 2x^2 + 300$ respectivamente. Determina el ingreso obtenido al producir la trigésima primera unidad y aproxima dicho valor con el ingreso marginal.

c. Una empresa de telas estima el costo para producir x metros de tela es $C(x) = 0.001x^3 - 0.2x^2 + 24x + 2400$ y que al vender x metros cobrarían $p(x) = 58 - 0.00042x$ por metro. Determina el nivel de producción para obtener una utilidad máxima.

Ingreso sugerido: $l(x) = p(x) \cdot x$

d. Un estadio de fútbol tiene una capacidad para 50 000 espectadores. El promedio de asientos fue de 32 000 espectadores, teniendo los boletos un costo de $50.00 por persona, la gerencia baja el precio por boleto a $40.00, teniendo un promedio de 48 000 espectadores. Determina la función lineal de la demanda $p(x)$ y calcula el precio por boleto para minimizar el ingreso.

VIII. Determina la diferencial de las siguientes funciones.

a) $f(x) = x^3 - 2x^2 + 5$

b) $h(t) = (5 - 3t^2)^5$

c) $y = (x^2 - 2)^{-3}$

d) $y = (2 + 3x^{-1})^{1/3}$

e) $f(x) = (x - 1)^3(x + 3)^4$

f) $s(t) = \sqrt{t} - \sqrt[3]{t}$

g) $y = x\sqrt{x^2 + 2}$

h) $h(s) = \frac{s^2 - 1}{2s + 3}$

i) $g(x) = \frac{x^3}{x^2 - 1}$

j) $y = \frac{x - 2}{\sqrt[3]{x^3 + 3}}$

k) $f(t) = \tan^3 2t$

l) $y = (1 - \sec x)^2$

m) $g(x) = \frac{1 - \sin x}{1 + \sin x}$

n) $y = \log(x^2 + 5)$

o) $y = \ln(x^2 - 3)$

p) $f(x) = \ln\left(\frac{x - 1}{x + 2}\right)$

q) $y = e^{\sqrt{x^2}}$

r) $y = 2x^3 + 5$

s) $f(x) = x^2 \ln x$

w) $f(x) = \arccos 2x$

GUÍA DE CÁLCULO DIFERENCIAL. Tercer parcial
ACADEMIA DE MATEMÁTICAS. TURNO VESPERTINO. 2018
k) $s(t) = \frac{\sqrt{\cos t}}{t}$

l) $f(x) = \frac{\sec x - 1}{\sqrt{\sec x + 1}}$

m) $g(x) = x - \cos 2x$

x) $g(x) = \arctan \left(\frac{2}{x}\right)$

y) $g(x) = \arccos \sqrt{x}$

z) $h(x) = \arcsin (3x^2)$